Dynamic trees as search trees via Euler tours, applied to the network simplex algorithm
نویسنده
چکیده
The dynamic tree is an abstract data type that allows the maintenance of a collection of trees subject to joining by adding edges (linking) and splitting by deleting edges (cutting), while at the same time allowing reporting of certain combinations of vertex or edge values. For many applications of dynamic trees, values must be combined along paths. For other applications, values must be combined over entire trees. For the latter situation, we show that an idea used originally in parallel graph algorithms, to represent trees by Euler tours, leads to a simple implementation with a time of O(log n) per tree operation, where n is the number of tree vertices. We apply this representation to the implementation of two versions of the network simplex algorithm, resulting in a time of O(log n) per pivot, where n is the number of vertices in the problem network.
منابع مشابه
Optimizing the Static and Dynamic Scheduling problem of Automated Guided Vehicles in Container Terminals
The Minimum Cost Flow (MCF) problem is a well-known problem in the area of network optimisation. To tackle this problem, Network Simplex Algorithm (NSA) is the fastest solution method. NSA has three extensions, namely Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+). The objectives of the research reported in this...
متن کاملCOMP 203: Parallel and Distributed Computing PRAM Algorithms
3 Basic PRAM algorithm design techniques 6 3.1 Balanced trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Pointer jumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Algorithm cascading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Euler to...
متن کاملUse of dynamic trees in a network simplex algorithm for the maximum flow problem
Goldfarb and Hao (1990) have proposed a pivot rule for the primal network simplex algorithm that will solve a maximum flow problem on an n-vertex, m-arc network in at most nm pivots and O(nZm) time. In this paper we describe how to extend the dynamic tree data structure of Sleator and Tarjan (1983, 1985) to reduce the running time of this algorithm to O(nm log n). This bound is less than a loga...
متن کاملDynamic trees in exterior-point Simplex-type algorithms for network flow problems
Recently, a new Dual Network Exterior-Point Simplex Algorithm (DNEPSA) for the Minimum Cost Network Flow Problem (MCNFP) has been developed. In extensive computational studies, DNEPSA performed better than the classical Dual Network Simplex Algorithm (DNSA). In this paper, we present for the first time how to utilize the dynamic trees data structure in the DNEPSA algorithm, in order to achieve ...
متن کاملOptimal Self-healing of Smart Distribution Grids Based on Spanning Trees to Improve System Reliability
In this paper, a self-healing approach for smart distribution network is presented based on Graph theory and cut sets. In the proposed Graph theory based approach, the upstream grid and all the existing microgrids are modeled as a common node after fault occurrence. Thereafter, the maneuvering lines which are in the cut sets are selected as the recovery path for alternatives networks by making ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 77 شماره
صفحات -
تاریخ انتشار 1997